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Abstract. We discuss a class of event shapes for e+e− dijet events that include the thrust as a special
case. Large logarithmic corrections to the corresponding cross sections can be resummed to all logarithmic
orders at leading power. However, irrespective of the order up to which the perturbative expansion is
calculated, it has to be supplemented by nonperturbative corrections due to its at best asymptotic nature.
We find that the leading power corrections are universal for the class of event shapes discussed here. Based
on these findings, we provide sample numerical predictions for the distributions of the new event shapes.

PACS. 12.38.Cy Summation of perturbation theory in QCD – 13.87.-a Jets in large-Q2 scattering

1 Motivation

Event shapes are generalizations of jet cross sections that
describe the distribution of radiation in the final state
[1]. They are thus sensitive to both the underlying short-
distance hard scattering and to long-time hadronization
processes. In the following, although not always stated
explicitly, we will consider event shapes in e+e− annihila-
tion, where long-time effects only affect the final state.

The hard scattering is responsible for the basic form
of the distribution of radiation. For example, the contri-
bution of a two-jet event to an event shape cross section is
distinctly different from that of a three-jet final state. The
distribution of radiation stemming from the short-distance
process can be computed within perturbation theory in
terms of quarks and gluons. Originally, this was one of
the main motivations to study event shapes, to test QCD
[1].

The correctness of QCD was quickly established by
confirming the main features of event shape distributions
[1]. Despite this success, perturbation theory cannot fully
account for their exact form. This is due to hadronization
effects which enter as nonperturbative (NP) power correc-
tions. The main, although not only, effect of the hadroniza-
tion process is to widen the distribution of radiation in the
final state, and thus to shift the peak of the event shape
distribution away from the narrow-jet limit [2,3]. For the
description of this shift it suffices to consider the first po-
wer correction, typically proportional to 1/Q, where Q is
the center of mass (c.m.) energy. In general, this gives an
accurate picture of the energy dependence of the average
values of a variety of e+e− event shapes with only a small
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set of parameters that are fit to experiment (see [4] and
references therein). For differential distributions, however,
one needs to take into account more than the first power
correction, which leads to the introduction of nonpertur-
bative shape functions [5]. Perturbation theory imposes
constraints on these shape functions such that good agre-
ement with experiment can be achieved, again with only
a small set of NP parameters [6].

The present state of the art is perturbative computati-
ons up to next-to-leading order (NLO) in the strong cou-
pling, with large logarithmic corrections due to soft and/or
collinear radiation resummed to next-to-leading logarithm
(NLL). Supplemented with the aforementioned set of non-
perturbative parameters, many e+e− event shape cross
sections can be predicted with impressive accuracy. One of
the main applications is thus the precise determination of
the strong coupling [4]. Nevertheless, as we will illustrate
below, there is still more to be learned from the theoretical
study of such event shapes, aside from the computation of
yet higher orders or their numerical evaluation.

In [7], the authors, together with T. Kúcs, introduced a
class of event shapes τa, depending on a continuous, real,
parameter a, that includes as special cases the familiar
thrust [8] and jet broadening [9]. As we will review be-
low in Sect. 2, the introduction of this parameter a allows
us to analytically study a whole range of event shapes si-
multaneously, and from its variation deduce a variety of
consequences for both the perturbatively calculable contri-
butions [7], and the long-distance corrections [10,11]. The
factorization of long- and short-distance effects results in
a scaling rule that relates the power corrections within
the considered class of event shapes, which is described in
Sect. 3. We provide numerical examples, and conclude by
summarizing present and possible future perspectives.
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For sake of brevity, we only quote here the main fea-
tures of the analytical results obtained in [7] and [11].
More details, an account of various technicalities, and fur-
ther references can be found there. Here we show some
new numerical results.

2 Resummation of large logarithms

We consider the following distributions of event shapes τa

that weight final states N in e+e− annihilation processes
in the narrow two-jet limit,

dσ(τa, Q)
dτa

=
1

2Q2

∑

N

|M(N)|2 δ(τa − τa(N)), (1)

with a center of mass energy Q � ΛQCD. We sum over
all final states N that contribute to the weighted event.
M(N) denotes the corresponding amplitude. The weight
functions defined in [7] for a state N are

τa(N) =
1
Q

∑

all i∈N

pi⊥ e−|ηi|(1−a) , (2)

where pi⊥ is the transverse momentum of particle i rela-
tive to the thrust axis, and ηi is the corresponding pseudo-
rapidity, ηi = ln cot (θi/2). The thrust axis [8] is the axis
with respect to which the above expression is minimized
at a = 0. Parameter a is adjustable, −∞ < a < 2, and
allows us to study various event shapes within the same
formalism. The case a = 0 in (2) is essentially 1 − T , with
T the thrust while a = 1 is the jet broadening.

In the two-jet limit, τa → 0, and (1) has large correc-
tions in ln (1/τa) that have been resummed to all logarith-
mic orders at leading power for a < 1 in [7]. For a ∼ 1,
recoil effects have to be taken into account, as was pointed
out for the broadening (a = 1) in [12].

In the following we will quote the result of the resum-
mation of large logarithms of τa in Laplace moment space:

σ̃ (ν, Q, a) =
∫ 1

0
dτa e −ν τa

dσ(τa, Q)
dτa

. (3)

Logarithms of 1/τa are transformed to logarithms of ν.
We refrain from quoting the slightly more complex for-

mula for the resummed cross section valid to all logarith-
mic orders [7], and only give the result at NLL,

1
σtot

σ̃ (ν, Q, a)=exp

{
2

1∫

0

du

u

[ uQ2∫

u2Q2

dp2
⊥

p2
⊥

A (αs(p⊥))

×
(
e−u1−aν(p⊥/Q)a − 1

)

+
1
2

B
(
αs(

√
uQ)

) (
e−u(ν/2)2/(2−a) − 1

) ]}
. (4)

The resummation is in terms of anomalous dimensions
A(αs) and B(αs), which have finite expansions in the

running coupling, A(αs) =
∑∞

n=1 A(n) (αs/π)n, and si-
milarly for B(αs), with the well-known coefficients A(1) =
CF , B(1) = −3/2 CF , A(2) = 1/2 CF [CA(67/18 − π2/6) −
10/9 TF Nf ], at NLL accuracy, independent of a, where
CF = 4/3, CA = 3, TF = 1/2, and Nf denotes the num-
ber of flavors. At a = 0 we reproduce the NLL resummed
thrust cross section [13].

3 Universality of power corrections

As it stands, the perturbative cross section, (4) is ill-
defined for small values of τa. This is due to the at best
asymptotic nature of the perturbation series, which ma-
nifests itself in (4) as an ambiguity in how to treat the
singularities in the running coupling. At τa ∼ ΛQCD/Q
nonperturbative corrections become dominant. Neverthe-
less, due to the quantum mechanical incoherence of short-
and long-distance effects, one can separate the perturba-
tive part from the NP contribution in a well-defined, alt-
hough prescription-dependent manner (see [5] and refe-
rences therein).

Following [5], we can deduce the structure of the NP
corrections by a direct expansion of the integrand in the
exponent at momentum scales below an infrared factoriza-
tion scale κ. We rewrite (4) as the sum of a perturbative
term, labelled with the subscript PT, where all p⊥ > κ,
and a soft term that contains all NP physics:

ln
[

1
σtot

σ̃ (ν, Q, a)
]

= 2




Q2∫

κ2

dp2
⊥

p2
⊥

+

κ2∫

0

dp2
⊥

p2
⊥



A (αs(p⊥))

×
p⊥/Q∫

p2
⊥/Q2

du

u

(
e−u1−aν(p⊥/Q)a − 1

)
+ B-term

≡ ln
[

1
σtot

σ̃PT (ν, Q, κ, a)
]

+
2

1 − a

∞∑

n=1

1
n n!

(
− ν

Q

)n
κ2∫

0

dp2
⊥

p2
⊥

pn
⊥A (αs(p⊥)) . (5)

We have suppressed terms of order O(ν/Q2−a, ν
2

2−a /Q2),
which include the entire B-term of (4), as indicated. In-
troducing the shape function as an expansion in powers
of ν/Q, from the expansion of the exponent in the second
equality of (5), with NP coefficients λn(κ), we arrive at,

σ̃ (ν, Q, a) = σ̃PT (ν, Q, κ, a) f̃a,NP

(
ν

Q
, κ

)
, (6)

ln f̃a,NP

(
ν

Q
, κ

)
≡ 1

1 − a

∞∑

n=1

λn(κ)
(

− ν

Q

)n

. (7)

We find the simple result that the only dependence on a
is through an overall factor 1/(1 − a) which leads to the
scaling rule for the shape function [10,11]:

f̃a,NP

(
ν

Q
, κ

)
=

[
f̃0,NP

(
ν

Q
, κ

)] 1
1−a

. (8)



C.F. Berger and G. Sterman: Power corrections to e+e− Dijet event shapes 409

0.00 0.05 0.10 0.15
0

10

20

30

40

50

 L3
 OPAL
 SLD

1/
σ t

ot
 d

σ/
d τ

a

τa

Fig. 1. Differential distributions (1/σtot)dσ/dτa for a = 0,
and a = −0.5 at Q = 91 GeV. Dash-dotted line: output of
PYTHIA, a = 0; dotted line: perturbative contribution at
NLL/NLO, a = 0, as defined in (5); dashed line: same as dot-
ted line, at a = −0.5; solid line: prediction for a = −0.5 using
(6) and (8). The data are taken from [16]

Given the shape function for the thrust at a = 0 at a
specific c.m. energy Q, one can predict the shape function
and thus from (6) the cross section including all leading
power corrections for any other value of a.

Before showing some numerical results, we want to
comment briefly on the main assumptions that go into
the above derivation. Our starting point is the NLL re-
summed cross section (4), which describes independent
radiation from the two primary outgoing partons. Corre-
lations between hemispheres are neglected, although they
are present in the resummed formula valid to all logarith-
mic orders [7]. However, it has been found from numerical
studies that such correlations may indeed be unimportant
[6]. Furthermore, we assume in the separation of pertur-
bative and NP effects (5), that long-distance physics has
the same properties under boosts as the short-distance ra-
diation. Success of the scaling (8) would thus indicate that
NP processes are boost-invariant as well [11].

4 Numerical predictions

In [11] we showed some examples of the shape function in
moment space, computed from the perturbative expres-
sion (4), matched to fixed order calculations at NLO with
EVENT2 [14], and from the output of the event generator
PYTHIA [15] in the absence of data analysis for values
of a different from the thrust (a = 0). Here we show re-
sults in momentum space, after numerical inversion of the
Laplace transform.

In Fig. 1 we show our prediction, including NP cor-
rections, for the differential distribution for a = −0.5 in
momentum space (solid line). To obtain this prediction,
we compute the shape function at a = 0 via (6) from
the perturbatively calculated distribution at NLO/NLL
(dotted line) and the output of PYTHIA at a = 0 (dash-
dotted line). We take PYTHIA’s output instead of fitting

a function to the data since it fits the data for the thrust
(a = 0) well. The prediction for a = −0.5 is then found
from (6) with the shape function scaled according to rule
(8) and our perturbative calculation (dashed line). For
further technical details we refer to [11].

5 Summary and outlook

We have illustrated how one can test specific properties of
long-distance physics with the help of perturbation theory,
if supplemented by experimental information. Success or
failure of the scaling (8) will provide information about the
importance of interjet correlations and about the boost
properties of long-range interactions in e+e− dijet events.
This additional information about nonperturbative phy-
sics in turn could, for example, be helpful in precision
measurements of αs. We hope that experimental tests of
our predictions will be carried out in the near future.
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